Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia.
نویسندگان
چکیده
Microglial cells are professional phagocytes of the CNS responsible for clearance of unwanted structures. Neuronal processes are marked by complement C1 before they are removed in development or during disease processes. Target molecules involved in C1 binding and mechanisms of clearance are still unclear. Here we show that the terminal sugar residue sialic acid of the mouse neuronal glycocalyx determines complement C1 binding and microglial-mediated clearance function. Several early components of the classical complement cascade including C1q, C1r, C1s, and C3 were produced by cultured mouse microglia. The opsonin C1q was binding to neurites after enzymatic removal of sialic acid residues from the neuronal glycocalyx. Desialylated neurites, but not neurites with intact sialic acid caps, were cleared and taken up by cocultured microglial cells. The removal of the desialylated neurites was mediated via the complement receptor-3 (CR3; CD11b/CD18). Data demonstrate that mouse microglial cells via CR3 recognize and remove neuronal structures with an altered neuronal glycocalyx lacking terminal sialic acid.
منابع مشابه
Microglial Immunoreceptor Tyrosine-Based Activation and Inhibition Motif Signaling in Neuroinflammation
Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM-) Syk-signaling cascade. Microglial trigger...
متن کاملMicroglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst.
Sialic acid-binding Ig-like lectins (Siglecs) are members of the Ig superfamily that recognize sialic acid residues of glycoproteins. Siglec-E is a mouse CD33-related Siglec that preferentially binds to sialic acid residues of the cellular glycocalyx. Here, we demonstrate gene transcription and protein expression of Siglec-E by cultured mouse microglia. Siglec-E on microglia inhibited phagocyto...
متن کاملTHE EFFECT OF THE REMOVAL OF SIALIC ACID, GALACTOSE AND TOTAL CARBOHYDRATE ON THE FUNCTIONAL ACTIVITY OF CAMPATH-I H P. N. BOYD,* A. C. LINES and A. K. PATEL
A monoclonal human IgGl, Campath-lH, was digested with glycosidases to assess the effect of carbohydrate on the functional activities of an IgGl. Removal of the complete carbohydrate moiety abolished complement lysis activity and antibody-dependent cell-mediated cytotoxicity, but left antigen binding activity and protein A binding activity intact. Removal of terminal sialic acid residues throug...
متن کاملSiglec functions of microglia.
Microglia are the resident immune cells of the central nervous system. They can sense intact or lesioned cells and then respond in an appropriate way. Therefore, microglia need recognition receptors that lead to either the activation or the inhibition of the immune response pathways. Most Siglecs contain an immunoreceptor tyrosine based inhibition motif and its signaling leads to the terminatio...
متن کاملP183: Key Function of Complement System in Interactions between Pain and Nociceptors, C5a, and C3a
A part of the immune system that improves (complements) the ability of antibodies and phagocytic cells to clear microorganisms and injured cells from an organism, attacks the pathogen's cell membrane, and encourages inflammation called complement system. It is main part of immune system. Over thirty proteins and protein pieces compose the complement system, including cell membrane receptors, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 3 شماره
صفحات -
تاریخ انتشار 2012